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Abstract

The aim of this work is to show the benefit of using various new methods in studying the general aspects of the convective flow in a
simulated Czochralski system. We considered the influence of the crystal rotation (Reynolds number from 0 to 3.9 � 103) and buoyancy
(Rayleigh number from 0 to 7.2 � 107). Velocity fields, obtained by an ultrasonic technique, the corresponding 2D Fourier spectra and a
correlation function have been used. Steady, quasi-periodic and turbulent states, were recognized. The complex space–time dynamics of
the flow were reduced to a binary code of the velocity fields. Thanks to the binary representation, the transition to turbulence in the
Czochralski flow was found to occur via spatiotemporal intermittency. The orthogonal decomposition method was applied and the num-
bers of modes, involved in the dynamics of turbulent flows, calculated. As expected, the increase of the buoyancy effects induces more
modes to be involved in the dynamics. The increase of the rotation effects reduces the number of modes and oscillations. The reconstruc-
tion coefficients, obtained using the proper orthogonal decomposition method, were found to reflect accurately the actual flow. The var-
ious analysis methods used in this paper allowed reaching complementary results and corroborating conclusions.
� 2008 Elsevier Ltd. All rights reserved.
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1. Introduction

Although several methods have been used to manufac-
ture silicon crystals, the so-called Czochralski (Cz) crystal
puller method is widely used for industrial production. This
fact comes from the ability of the Cz method to meet the
stringent requirements for purity and crystallographic per-
fection. A comprehensive introduction and review of the
research carried out on this flow, prior to 1997, can be
found in [1]. More recently, other papers dealing with the
Cz convective system have been published [2–6]. These
papers were mainly devoted to the numerical modelling
of the flow instabilities and the application of a magnetic
field to suppress the flow oscillations.
0017-9310/$ - see front matter � 2008 Elsevier Ltd. All rights reserved.
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The melt flow in a Czochralski crucible during silicon
crystal growth influences the quality of the grown crystals
[7]. Indeed, the melt flow oscillations are known to have
an especially strong influence upon microdefects and stria-
tions which appear in the final crystal and which are detri-
mental to the quality of semi-conductor devices made from
it [8]. Thus, a more complete understanding of the fluid
flow in silicon melts is essential.

Recently, much effort has been devoted to producing
large-sized crystals to increase the productivity of semicon-
ductor industry [8]. Since the size of the Czochralski cruci-
ble has to be large, the assumption of a laminar flow may
not be generally valid. Indeed, the large values of Reynolds
(Re) and Rayleigh (Ra) numbers for such extended systems
imply that the fluid motions may be turbulent.

Once a turbulent state is recognized, it is interesting to
measure at least the number of modes involved in the
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Nomenclature

Latin symbols

aij reconstruction coefficients
c speed of sound
C averaged covariance matrix
C(t) correlation function
Dkl KL dimension
E total energy of the system
f frequency
g gravity
k wavenumber
Pr Prandtl number
R(p) percentage of the energy contained in the first

(p) modes
Ra Rayleigh number
Rcru radius of the crucible
Rcry radius of the crystal
Re Reynolds number
v velocity

Z acoustic impedance

Greek symbols

a thermal diffusivity
b volumetric coefficient of thermal expansion
j thermal conductivity
kj the energy of the mode j

m kinematic viscosity
q density
X angular velocity of the crystal
U’s the empirical eigenfunctions or coherent structures
DT difference of temperature applied between the

crucible and the crystal

Abbreviations

Cz Czochralski
KL Karhunen–Loève
UVP ultrasonic velocity profile
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turbulent dynamics. For that purpose, the number of posi-
tive Lyapunov exponents is useful [9]. However, in an
experiment, the calculation of these exponents becomes dif-
ficult to carry out when the number of positive exponents is
larger than five [10]. Consequently, other methods have
been tested, such as the proper orthogonal decomposition
(Karhunen–Loève (KL) decomposition) [11,12] that has
been applied to experimental [13–18] and numerical data
sets [16,19–23]. More recently, it has been used to analyse
the flow structures in a ventilated room [24] and has been
applied to data sets of internal combustion engine flows
[25]. This method is useful not only in estimating the num-
ber of the degrees of freedom of a dynamical system [16],
but allows also theoretical models of the systems under
study to be established [14,26]. The KL method converges
rapidly even on data sets for which calculations of the
Lyapunov exponents give wrong results because of insuffi-
cient data. The fact that it has only been few applications
to experimental data sets is mainly due to a lack of a suit-
able measurement method that can provide data with suf-
ficient spatial and time resolutions. Now, we can use the
ultrasonic velocity profile (UVP) technique [27] which
allows obtaining a suitable spatio-temporal velocity field.

As far as we know, no experimental work has been car-
ried out to study the Cz flow, using tools such as the UVP
velocity profiles, 2D Fourier spectra and a correlation
function to recognize the flow regimes, the binary represen-
tation to study the scenario of transition to turbulence and
the orthogonal decomposition method to estimate the
number of degrees of freedom (number of involved modes,
dimension) of the turbulent regimes. As it will be shown
below, the use of such analysis methods allows a quantita-
tive study of the Cz flow, which allows us recognizing the
various flow regimes, the scenario of transition to turbu-
lence and the number of modes involved for various exper-
imental conditions. The obtained results might be useful in
giving us the means to suppress or control the flow oscilla-
tions which need to be avoided in order to get free defect
crystals. Simple theoretical models can also be established
thanks to the KL method that allows calculating the num-
ber of degrees of freedom of the system (number of equa-
tions sufficient to study the system).

Using velocity fields obtained by the UVP technique and
the analysis methods mentioned above, this paper allows
showing the benefit and the feasibility of these methods
and it is not meant to carry out a systematic parametric
study. Indeed, the aim of this work is to show that the pro-
posed techniques and methods, which were used in other
applications, are efficient and may be used to carry out a
comprehensive and systematic study of the real Cz growth
system.

The paper is organized as follows: In Section 2, the exper-
imental set-up and the UVP technique are briefly described;
the analysis methods are described in Section 3. Some
typical results are presented and discussed in Section 4
and conclusions are given in Section 5.

2. Experimental set-up and procedures

The experimental set-up, shown in Fig. 1, consisted of a
simulated crucible (1) made of Pyrex glass (thermal con-
ductivity j = 1.005 W/mK at 25 �C and acoustic imped-
ance Z = 13.1 � 106 kg/sm2) of 10-cm inner diameter and
10-cm height and a simulated crystal (2) of 3-cm diameter
made of brass (j = 109 W/mK at 25 �C). The crucible (1)
was filled with 2 cSt silicone oil (j = 0.15 W/mK at
25 �C, Z = 0.74� 106 kg/sm2, Prandtl number, Pr = 28 at
T = 25 �C) as a model liquid (3). The simulated crystal



Fig. 1. Schematic of the experimental set-up, (1) simulated crucible, (2) simulated crystal, (3) silicone oil, (4) Motor to rotate the simulated crystal, (5) and
(6) temperature-regulated baths, (7) UVP sensor, (8) UVP monitor. The measured velocity corresponds to the component of the flow velocity vector along
the ultrasonic beam line which is drawn in a dashed line. The 128 positions at which velocities are measured are also shown.

Table 2
Properties of the 2 cSt silicone oil at 25 �C

Property Value

Density (q) 0.873 � 103 (kg/m3)
Kinematic viscosity (m) 2.0 � 106 (m2/s)
Volumetric coefficient (b) 0.24 � 10�3 (K�1)
Thermal diffusivity (a) 7.1 � 10�8 (m2/s)
Sound velocity (c) 1000 m/s
Acoustic impedance (Z) 0.74 � 106 kg/sm2

Thermal conductivity (j) 0.15 W/mK
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(2) was rotated by a motor (4). The temperature difference
between the crucible and the crystal was obtained by circu-
lating cold and hot water flows, respectively, coming from
two temperature-regulated baths (5, 6). The temperature
fluctuations in both the crucible and the simulated crystal
are about ±0.1 �C.

The UVP sensor (7) was set 1 cm below the liquid upper
surface, and in contact with the outer wall of the crucible
(Fig. 1). The measured velocity corresponds to the compo-
nent of the flow velocity vector along the ultrasonic beam
line [28], which is shown in Fig. 1, in a dashed line. The
128 positions at which velocities are measured are also
shown. The measuring volume of each data point has a disc
shape of radius 2 mm and thickness 0.75 mm. The UVP
apparatus used in this work is the Met-Flow model X-1.
The ultrasound transducer (7) was operated with a basic
frequency of 4 MHz and a beam diameter of 4 mm. The
other parameters of the measurements are given in Table
1. From the value of the speed of sound in the silicone
oil (Table 2) and for f = 4 MHz, a wavelength of the ultra-
sound of 0.25 mm can be deduced. The divergence of the
ultrasonic beam generated by the transducer used in our
experiments being low (±4�), the diameter of the beam
Table 1
Parameters of the UVP measurements

Parameter Value

Basic frequency of ultrasound 4 MHz
Ultrasonic beam diameter 4 mm
Number of measurement points (channels) 128
Number of profiles 1024
Spatial resolution 0.74 mm
Velocity resolution 0.48 mm/s
PRF 976 Hz
Divergence of the ultrasound beam ±4 �
Maximum velocity 61 mm/s
could then reach a maximum value of 15 mm. Actually,
this value is thought to be less because of the focusing effect
of the cylindrical wall [29].

The flow was visualized (Fig. 2) in the vertical median
plane using a light sheet and powdered ferrite as tracer.
As only ferrite particles with a density close to that of the
silicone oil (q = 0.873 g/cm3) are used (lighter and heavier
particles being excluded before to start the experiments),
the particles stay in suspension and follow the flow
motions. It can also be noticed that the deflections of the
ultrasound beam due to the interaction of the waves with
the ferrite particles is less than 1� in our experimental con-
ditions and can be considered as negligible [29].

The dimensions of our configuration are close to those
used in [6] by Liu and Kakimoto, who studied a system
with a crystal of 3-cm diameter and a crucible of 6.4-cm
diameter. In the commercial scale Czochralski growth sys-
tem of [8], a crystal of 15-cm diameter and a crucible of 46-
cm diameter were used. The ratio of the crucible’s diameter
to that of the crystal is close to 3 in both our simulated con-
figuration and in the commercial scale Czochralski system
[8]. The flow behaviour in our configuration is then
expected to reflect that of the commercial scale system.
As for the fluid, the 2 cSt silicone oil has been chosen,
because it has a small Prandtl number (Pr = 28) and since



Fig. 2. Observed patterns, in the crucible’s vertical median plane, taken with 1 s exposure time, in 2 cSt silicone oil. (a) Ra = 0, Re = 5.9 � 102. (b)
Ra = 107, Re = 0.
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it is transparent, the flow visualization could be carried out.
In the real Cz system, it is not possible to visualize the flow
patterns using optical techniques because the melt is opa-
que and it is also difficult to measure temperature or veloc-
ity fields because of the high temperature and reactivity of
the melt. Therefore, simulation with a model liquid, as in
our study, is usually adopted in order to comprehend the
general aspects of the flow behaviour.

The UVP technique [27] has been chosen because it
allows getting a sufficient number of simultaneous measure-
ments which cannot be obtained using the other classical
measurement techniques which are limited by the number
of sensors and/or data acquisition channels. Indeed the
UVP allows overcoming efficiently this problem. This
method uses the pulsed echography of an ultrasound. An
ultrasound pulse is emitted from a transducer along the
measurement line (corresponding to the diameter of the cru-
cible in our experiment), and the same transducer receives
the echo reflected back from particles scattered in the fluid.

The position information is given by the time elapsing
between the pulse emission and the echo reception, and
velocity information is obtained from the Doppler shift
in the frequency at each instant. As the temperature was
carefully controlled by a thermocouple in the vicinity of
the measurement line, the input sound velocity parameter
was corrected according to the actual value of the temper-
ature. Instantaneous temperature fluctuations of about
±0.3 K were detected inside the flow. If the temperature
dependence of the speed of sound is taken into account,
the maximum uncertainty in the determination of the mea-
suring depth (i.e. the position information) is about 0.1 mm
which is less than the spatial resolution, which is equal to
0.74 mm (Table 1).

As the Doppler shift method relies upon echoes from
particles scattered in the silicon oil, optimal particles
should have a density close to that of the liquid, in order
to stay in suspension and follow the motions of the fluid
as mentioned above. As for the particle size, if it is larger
than the ultrasound wavelength, the waves are reflected
and refracted by the particles. In such case, the direction
of the propagation and the intensity of the wave are mod-
ified. On the other hand, if the size of a particle is smaller
than the wavelength, another effect will occur, that is
named scattering, for which, a small amount of the ultra-
sonic energy is reflected in all directions. As for the inten-
sity and the direction of propagation of the waves, they
are not practically affected by the scattering effect. There-
fore particles smaller than the wavelength of the ultrasound
are needed to carry out UVP measurements. The ferrite
particles used in our experiments are about 40 lm in diam-
eter, smaller then the ultrasound wavelength which has
been calculated above (=0.25 mm).

Another crucial point of the UVP application is the
transmission of the ultrasonic beam through the lateral
wall which depends on the ratio of the acoustic impedances
of both the lateral wall and the silicone oil. The acoustic
impedance being given by Z = q � c (c is the speed of
sound and q the density). The acoustic impedance of the
Pyrex glass is Z = 13.1 � 106 kg/sm2 and that of the silicon
oil Z = 0.74 � 106 kg/sm2. These acoustic impedances can
be considered as sufficiently not far to allow the transmis-
sion of an ultrasound wave with sufficient energy and
amplitude at the wall–liquid interface.

Fig. 3 shows examples of velocity fields obtained using
the UVP technique described above. There are 128 mea-
surement points per profile and one experimental run con-
sists of 1024 temporal profiles that are successively
collected. The speed and direction of the flow are colour-
coded. Velocities of the particles moving towards the
UVP sensor are represented in green to blue and those of
particles moving away from the UVP sensor indicated in
red to yellow. The measured velocity fields were used as
the basis on which the analysis has been conducted.

The pulse repetition frequency (PRF) of the ultrasonic
wave is an essential parameter in the UVP measurements
since the time, tPRF, between two ultrasound emissions



Fig. 3. Velocity profiles for a fixed Ra (=107). (a) Steady state (Re = 7.1 � 102). (b) Quasi-periodic state (Re = 1.2 � 103). (c) Turbulent state
(Re = 2.9 � 103). Velocities of the particles moving towards the UVP sensor are represented in green to blue and those of particles moving away from the
UVP sensor indicated in red to yellow. There are 128 measurement points per profile and 1024 temporal profiles. (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)
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determines both the length and the velocity resolution.
Indeed, if the time between two wave emissions is too long,
fast particles could move too fast to yield echoes that can
be detected. On the other hand, too slow particles do not
allow showing detectable displacements between two emis-
sions if the PRF is too large. The PRF parameter has then
to be carefully chosen. For our experiments, PRF was
taken equal to 976 Hz and the corresponding time,
tPRF � 1 ms, can be considered as very sufficient to capture
transient flow behaviour.

The maximum depth (Dmax) and velocity (Vmax) along
the beam that can be measured being linked by Dmax �



Fig. 4. 2D power spectra of the velocity profiles of Fig. 3b and c.
Horizontal and vertical axes are the frequency (f) and wavenumber (k)
axes, respectively. Ra = 107. (a) Quasi-periodic state (Re = 1.2 � 103). (b)
Turbulent state (Re = 2.9 � 103).
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Vmax = c2/8fe, where c is the speed of sound in the silicone
oil and fe the emission frequency (=4 MHz in our case)
[29]. As for our experiments, Dmax = 512 mm, the maxi-
mum velocity that can be measured is Vmax = 61 mm/s
and the velocity resolution is equal to 0.48 mm/s (Table 1).

The flow was studied as a function of the relevant
physical parameters in the Czochralski flow, namely, the
Rayleigh number, Ra ¼ gbDTR3

cru=ma (from 0 to 7.2 � 107)
and the Reynolds number, Re ¼ XR2

cry=m (from 0 to 3.9 �
103), where Rcry and Rcru are the radii of the crystal and
the crucible respectively; DT is the temperature difference
applied between the crucible and the crystal; b is the volu-
metric coefficient of thermal expansion, m is the kinematic
viscosity, a is the thermal diffusivity, X is the angular veloc-
ity of the crystal rotation, and g the gravity acceleration.
The physical properties of the 2 cst silicone oil are given
in Table 2.

If a mixed convection parameter, A = Ra/Pr � Re2, is
defined, as in [30], the flow resulting from the application
of both the rotation and buoyancy effects can be classified,
as a function of (A), as below:

(i) If 0 6 A < 0.5: the forced convection (rotation effects)
is dominant,

(ii) if A � 0.5: the rotation and buoyancy effects are of
equal force,

(iii) and the buoyancy effects are dominant when A > 0.5.

3. Analysis methods

The spatio-temporal nature of the flow is clearly
obtained and displayed on the UVP data (Fig. 3). How-
ever, to further understand the phenomena involved and
to reach corroborating conclusions from results obtained
by various means, we used the following methods.

3.1. Fourier spectrum

The UVP data can be analyzed by a 2D Fourier trans-
form to generate 2D spectra. The evolution of the flow
through its velocity fields can then be studied using the cor-
responding frequency-wavenumber spectra, the same way
as in [31]. This method is very useful because it allows to
gather on the same figure the temporal modes (through
the frequency of oscillation, f, axis corresponding to the
time axis in the velocity profile) and spatial modes (through
the wavenumber, k, axis corresponding to the position axis
in the velocity profile) (Fig. 4).

3.2. Correlation function

We can also compute the temporal correlation function,
defined as:

CðtÞ ¼ vðx; tÞ � hvi½ � vðx; oÞ � hvi½ �h i
v2h i ð1Þ
where v (x, t) and v (x, o) are the values of the velocity at
different times and h i denotes an average.
3.3. Binary representation

In order to know which scenario leads the Cz flow to the
turbulent regime, the binary representation has been used,
as in [10,32,33]. Indeed, in [10,32,33], the simultaneous
coexistence of two kinds (laminar and turbulent) of quali-
tatively different domains was an indicator to search for
a criterion which distinguishes their different spatial and
temporal characteristics and thereby enabling to recognize
the scenario of transition to turbulence. In laminar
domains (LD), the time evolution, at a given point, is either
steady or oscillating in time leading to a local mono-peri-
odic or quasi-periodic regime. On the other hand, turbulent
domains (TD) are regions without spatial coherence and
the time evolution is chaotic. The UVP velocity field can
then be reduced to a binary representation (laminar, turbu-
lent) which allows us to perform statistics on LD and TD
in the same way as in [10,32,33]. In our study, a temporal
criterion has been used, the velocity differences between
successive acquisitions were computed and compared to a
cut-off value (d). A point in the binary representation, cor-
responding to a velocity variation, is considered as laminar
if v (x, t + Dt) – v(x, t) 6d, otherwise it is turbulent. We ver-
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ified that, all the values of (d) within the range (1.5–2) lead
to the same binary representation. Calculations were car-
ried out with d = 1.75.

3.4. The proper orthogonal decomposition (Karhunen–Loève

(KL) decomposition)

The proper orthogonal decomposition (POD) is a
method for extracting an orthogonal basis (POD basis) for
the decomposition of a given collection of data which is gen-
erally a set of spatio-temporal signals. POD has its roots in
statistical analysis and has appeared with various names,
including: principal component analysis, empirical eigen-
functions, Karhunen–Loève decomposition, and empirical
orthogonal eigenfunctions. The POD has been extensively
used in numerous applications and was first introduced in
turbulence by Lumley [34]. The benefit of using POD is
the utilization of its fast convergence to get well resolved
simulations with a lower number of modes than a simula-
tion using, for example, Fourier decompositions.

As the KL decomposition applied to dynamic systems
has been described in detail in many publications [11,12],
we will restrict ourselves here to describing the overall
concept.

Choosing the appropriate input collection is a vital part
of the POD method since the POD basis only reflects infor-
mation provided by the input collection. An input collec-
tion of time snapshots is then frequently chosen when the
POD basis is used for model reduction. In our study, the
field to be decomposed using the KL method is a velocity
field v (x, t) obtained by UVP. Each data set is composed
of 128 � 1024 velocities in a matrix form.

Let us consider a data set

fvi; i ¼ 1; . . . . . . :; ng ð2Þ

where each vi is a m-vector

vi ¼ ðv1i; . . . :; vmiÞT ð3Þ

where n = 1024 and m = 128 in this case.
The principle of the method is to find a set of vectors

that forms a basis. Thus the resolution leads to an eigen-
value problem for the U’s:

CUj ¼ kjUj ð4Þ

where,

C ¼ hvivT
i i ð5Þ

is the ensemble averaged covariance matrix, and U’s are
called the eigenfunctions or coherent structures. C is a
m � m (128 � 128) symmetrical non-negative matrix, and
consequently determines a complete set of orthogonal
eigenvectors, and real non-negative eigenvalues. The rela-
tive magnitude of each eigenvalue with respect to all the
others gives a measure of the importance of the corre-
sponding eigenfunction in representing elements of the in-
put collection. POD inherently orders the basis elements
by their relative importance. The eigenvalues are then or-
dered, as:

k1 P k2 P k3 . . . :: P km ð6Þ

where kj is the energy of mode j and

E ¼
Xm

j¼1

kj ð7Þ

the total energy of the system.
Once, the U’s are determined by finding the eigenvectors

of C, the aij coefficients can be found by projecting the data
vectors onto each eigenvector in turn:

aij ¼ ðvi;UjÞ ð8Þ

These coefficients (aij) are referred to as ‘‘reconstruction
coefficients”.

Two widely used methods for determining the optimal
dimension of the reduced-order system are: (i) computing
the percentage of energy extracted; (ii) plotting the POD
eigenvalues. Each eigenvalue represents the energy contrib-
uted by each mode. Thus by including more POD modes,
one increases the total percentage of energy captured by
the reduced-order POD representation. As for us, we have
defined the quantity:

RðpÞ ¼
Xp

j¼1

kj

E
ð9Þ

which is the percentage of the energy contained in the first
(p) modes. In order to estimate the dimension of a flow, we
used the KL dimension Dkl, which is the number of modes
capturing 90 % of the total energy of the flow [18].

4. Results and discussion

In the Cz flow, the most important driving forces are (i)
the centrifugal force due to the crystal rotation; and (ii) the
buoyancy force due to the temperature gradient. The corre-
sponding flows are shown in Fig. 2a and b, respectively.
The first flow has the shape of a ring rotating around its
own axis and the second is an axisymetric flow. As a result
of the combination of the flows induced by these forces and
other forces, such as the Marangoni convection, the flow
behaves in a very complex manner in the crucible (Figs. 5
and 6).

For a given Rayleigh number (Ra = 107, DT = 5 K), as
the crystal rate of rotation increases (increase of X from
60 rpm to 250 rpm and the Reynolds number from
7.1 � 102 to 2.9 � 103), more vortices are involved and
the flow becomes more complex (Fig. 5). As for the mixed
convection parameter, (A), it varies from 0.708 which cor-
responds to dominant buoyancy effects for Re = 7.1 � 102

to A = 0.042 corresponding to dominant rotation effects
for Re = 2.9 � 103. The influence of the temperature differ-
ence (Ra number) on the flow can be seen in Fig. 6. For a
given Re (1.8 � 103, X = 150 rpm), as the temperature



Fig. 5. Observed patterns, taken with 1 s exposure time, in 2 cSt silicone oil. Ra = 107. (a) Re = 7.1 � 102. (b) Re = 1.2 � 103. (c) Re = 2.9 � 103.

Fig. 6. Observed patterns, taken with 1 s exposure time, in 2 cSt silicone oil. Re = 1.8 � 103. (a) Ra = 107. (b) Ra = 2.1 � 107.
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difference is increased (from DT = 5 to 10 K and Ra num-
ber increasing from 107 to 2.1 � 107), more vortices are
involved and the flow becomes more and more complex.
(A) Varies from 0.11 for Ra = 107 to A = 0.23 for Ra =
2.1 � 107 indicating that the rotation effects (forced con-
vection) are dominant.
Fig. 5 shows qualitatively the increase of the flow
complexity, as Re is increased, for a fixed value of the Ra

number. Velocity profiles corresponding to the flows of
Fig. 5 are shown in Fig. 3. Fig. 3a corresponds to a steady
state without any temporal variation of the velocity,
Fig. 3b corresponds to an oscillatory quasi-periodic state
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velocity and Fig. 3c corresponds to a turbulent state with-
out periodicity in either space or in time.

The application of 2D Fourier transforms to the velocity
fields of Fig. 3b and c, the same way as in [31], allows get-
ting the spectra shown in Fig. 4. Indeed, Fig. 4a shows a
spectrum corresponding to an oscillatory quasi-periodic
state with frequencies equal, respectively, to 0.038, 0.04
0.0

0.5

1.0

0 200 400 600 800 1000

t (seconds)

C
 (

t)

Fig. 7. Temporal correlation functions for the velocity fields correspond-
ing to: (a): Re = 2.9 � 103, (b): Re = 3.4 � 103. Ra = 107.

Fig. 8. Binary representations of the velocity profiles for various values of Re

correspond to turbulent and laminar domains respectively, as defined by the c
and 0.042 Hz, whereas the spectrum of Fig. 4b corresponds
to a turbulent state with large dispersions both in the fre-
quency of oscillation (f) (from 0.007 to 0.08 Hz) and the
wavenumber (k) (from 1.52 to 3.82), indicating the pres-
ence of a large number of temporal and spatial modes,
which is the characteristic of a turbulent flow. It can also
be noticed that the spatial modes, corresponding to k =
2.67 ± 0.26 and located at the middle of the spectrum,
are coupled to the temporal modes. So, the evolution of
these Fourier spectra as a function of Re for a fixed Ra

(=107) clearly shows the difference between the various
states and may allow to locate accurately the transition
to turbulence.

The correlation function shown in Fig. 7a and corre-
sponding to the velocity field at Re = 2.9 � 103 and
Ra = 107 appears noisy and does not strictly decrease to
zero. When the Reynolds number is further increased to
Re = 3.4 � 103, the corresponding correlation function
(Fig. 7b) does decrease monotonically to zero, that is, indi-
cating a loss of correlation of the system which is a charac-
teristic of a turbulent state. Thus, the zone of transition to
turbulence, is between Re = 1.2 � 103 and Re = 3.4 � 103.
This transition to turbulence has been characterized using
independent analysis methods, namely the 2D spectra
and the correlation function.

Experiments conducted by other authors have shown
two kinds of fluctuations [35,36], chaotic when only the free
convection is present (with only the temperature gradient);
and periodic variation when rotation is involved. Indeed,
the temperature gradient between the crucible and the crys-
tal affects significantly the flow in the crucible, particularly
in the close vicinity of the crystal growth interface [37].
More recently, an intermittent transition to chaotic flow
has also been observed in a Cz system, for which chaotic
temperature fluctuations have been detected near the crys-
tal–melt interface [38].

Using the binary representation method described
above, the spatio-temporal diagrams are shown in Fig. 8
((a): 1.2 103, (b): 1.8 �103 and (c): 2.9 � 103). The dark and white areas
riterion in the text.
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for different values of Re at a given Ra. When Re was
increased from 1.2 � 103 to 2.9 � 103, turbulent areas
propagate and connect within the laminar domains that
become fewer as in [10,32,33] where the transition to turbu-
lence via spatio-temporal intermittency was observed for
Rayleigh-Bénard convection. In order to characterize the
global degree of turbulence, the mean turbulent fraction
(Ft) and laminar fraction (Fl) have been computed, as in
[10,32,33], where (Ft) refers to the averaged total area occu-
pied by the turbulent patches divided by the total extent of
the field, Fl = 1 � Ft � (Ft) and (Fl) are plotted as functions
of Re in Fig. 9. It can be noticed that (Ft) increases and (Fl)
decreases as Re is increased, as in [10,32,33] and for
Re P 2.9 � 103, (Ft) is larger than (Fl).

Once a turbulent flow is recognized, it is interesting to
estimate the number of modes that may produce such
behaviour. For that purpose, the POD method has been
applied. The cumulative energy R(p) versus (p) is shown
in Fig. 10 for different values of Re at a given Ra (=107).
Clearly, R(p) reaches 90% of the total energy, at lower
(p) values, for highest Re, whereas for a given value of
Re (=1.8 � 103), the opposite was observed: 90% of the
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Fig. 9. Mean turbulent fraction Ft and laminar fraction Fl as functions of
Re. Ra = 107 (DT = 5 K).
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total energy is reached for lowest values of Ra (Fig. 11).
In Fig. 12, the dimension Dkl is plotted as a function of
Ra for various values of the Re number. It can be noticed
that, at a given Ra, Dkl decreases as Re is increased, and
increases with Ra for a given Re. Thus, it can be concluded
that the rotation effects are stabilizing the flow, and the
temperature gradients have a destabilizing role. Indeed,
the increase of the Re number (rotation effects) induces
the decrease of the system dimension (fewer modes are
involved in the dynamics). Conversely, more modes and
oscillations are involved when the buoyancy effects (Ra

number) are increased.
An example of the reconstruction coefficients, ai1 (i = 0,

1023 and j = 1), for Re = 1.2 � 103 and Ra = 107, plotted
as a function of i (time), is shown in Fig. 13. The recon-
struction coefficients show a periodicity, which is associ-
ated with a quasi-periodic oscillatory flow, in a good
agreement with the field showed in Fig. 3b and the spec-
trum of Fig. 4a. On the other hand, in Fig. 14, the recon-
struction coefficients a1j (i = 1, j = 0, 127) for Re =
0
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1.2 � 103 and Ra = 107, are plotted as a function of j (posi-
tion). As it can be seen, there is no spatial periodicity, in
agreement with the measured velocity field of Fig. 3b and
the spectrum of Fig. 4a. Figs. 13 and 14, shown above,
allow concluding that the reconstruction coefficients,
obtained using the KL method, reflect accurately the actual
flow and then can be used to build simple theoretical mod-
els of the system.
5. Conclusions

In this paper devoted to a simulated Czochralski system,
steady, quasi-periodic and turbulent flows, were succes-
sively observed, as the Reynolds number was increased,
for a fixed Rayleigh number. The various regimes were rec-
ognized using the velocity fields, their 2D Fourier spectra
and a correlation function.

By reducing the space–time dynamics of the velocity
fields to a binary representation, the transition to turbu-
lence was found to occur via spatio-temporal intermit-
tency, the most known route to turbulence in such
spatially extended systems [10,32,33].

The numbers of modes (dimensions), involved in the
dynamics of turbulent flows, were estimated, using the
KL decomposition. As far as we know, this method has
been used for the first time to study the Cz convective
flows, which provided us with information on the most
important modes and thus may allow simple theoretical
models to be established. The large rotation rates of the
crystal were found to stabilize the flow, and conversely
the temperature gradients destabilize the flow. Indeed, the
increase of the rotation effects reduces the number of
involved modes and oscillations, and conversely, as
expected, the increase of the buoyancy effects induces more
modes to be involved in the dynamics. Thus, the flow oscil-
lations can be reduced either by increasing the crystal rota-
tion rate to the adequate value, as shown in this study and
in [30], or by imposing a magnetic field [5]. The reconstruc-
tion coefficients obtained using the KL method were found
to reflect the actual flow and then can be used to built sim-
ple theoretical models of the system.

To summarize, the various analysis methods used in this
paper allowed reaching complementary results and corrob-
orating conclusions. These methods will therefore allow a
complete characterization of the convective regimes in the
real Cz growth system.
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